tokio_util/io/sync_bridge.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
use std::io::{BufRead, Read, Seek, Write};
use tokio::io::{
AsyncBufRead, AsyncBufReadExt, AsyncRead, AsyncReadExt, AsyncSeek, AsyncSeekExt, AsyncWrite,
AsyncWriteExt,
};
/// Use a [`tokio::io::AsyncRead`] synchronously as a [`std::io::Read`] or
/// a [`tokio::io::AsyncWrite`] synchronously as a [`std::io::Write`].
///
/// # Alternatives
///
/// In many cases, there are better alternatives to using `SyncIoBridge`, especially
/// if you want to avoid blocking the async runtime. Consider the following scenarios:
///
/// When hashing data, using `SyncIoBridge` can lead to suboptimal performance and
/// might not fully leverage the async capabilities of the system.
///
/// ### Why It Matters:
///
/// `SyncIoBridge` allows you to use asynchronous I/O operations in an synchronous
/// context by blocking the current thread. However, this can be inefficient because:
/// - **Inefficient Resource Usage**: `SyncIoBridge` takes up an entire OS thread,
/// which is inefficient compared to asynchronous code that can multiplex many
/// tasks on a single thread.
/// - **Thread Pool Saturation**: Excessive use of `SyncIoBridge` can exhaust the
/// async runtime's thread pool, reducing the number of threads available for
/// other tasks and impacting overall performance.
/// - **Missed Concurrency Benefits**: By using synchronous operations with
/// `SyncIoBridge`, you lose the ability to interleave tasks efficiently,
/// which is a key advantage of asynchronous programming.
///
/// ## Example 1: Hashing Data
///
/// The use of `SyncIoBridge` is unnecessary when hashing data. Instead, you can
/// process the data asynchronously by reading it into memory, which avoids blocking
/// the async runtime.
///
/// There are two strategies for avoiding `SyncIoBridge` when hashing data. When
/// the data fits into memory, the easiest is to read the data into a `Vec<u8>`
/// and hash it:
///
/// Explanation: This example demonstrates how to asynchronously read data from a
/// reader into memory and hash it using a synchronous hashing function. The
/// `SyncIoBridge` is avoided, ensuring that the async runtime is not blocked.
/// ```rust
/// use tokio::io::AsyncReadExt;
/// use tokio::io::AsyncRead;
/// use std::io::Cursor;
/// # mod blake3 { pub fn hash(_: &[u8]) {} }
///
/// async fn hash_contents(mut reader: impl AsyncRead + Unpin) -> Result<(), std::io::Error> {
/// // Read all data from the reader into a Vec<u8>.
/// let mut data = Vec::new();
/// reader.read_to_end(&mut data).await?;
///
/// // Hash the data using the blake3 hashing function.
/// let hash = blake3::hash(&data);
///
/// Ok(hash)
///}
///
/// #[tokio::main]
/// async fn main() -> Result<(), std::io::Error> {
/// // Example: In-memory data.
/// let data = b"Hello, world!"; // A byte slice.
/// let reader = Cursor::new(data); // Create an in-memory AsyncRead.
/// hash_contents(reader).await
/// }
/// ```
///
/// When the data doesn't fit into memory, the hashing library will usually
/// provide a `hasher` that you can repeatedly call `update` on to hash the data
/// one chunk at the time.
///
/// Explanation: This example demonstrates how to asynchronously stream data in
/// chunks for hashing. Each chunk is read asynchronously, and the hash is updated
/// incrementally. This avoids blocking and improves performance over using
/// `SyncIoBridge`.
///
/// ```rust
/// use tokio::io::AsyncReadExt;
/// use tokio::io::AsyncRead;
/// use std::io::Cursor;
/// # struct Hasher;
/// # impl Hasher { pub fn update(&mut self, _: &[u8]) {} pub fn finalize(&self) {} }
///
/// /// Asynchronously streams data from an async reader, processes it in chunks,
/// /// and hashes the data incrementally.
/// async fn hash_stream(mut reader: impl AsyncRead + Unpin, mut hasher: Hasher) -> Result<(), std::io::Error> {
/// // Create a buffer to read data into, sized for performance.
/// let mut data = vec![0; 64 * 1024];
/// loop {
/// // Read data from the reader into the buffer.
/// let len = reader.read(&mut data).await?;
/// if len == 0 { break; } // Exit loop if no more data.
///
/// // Update the hash with the data read.
/// hasher.update(&data[..len]);
/// }
///
/// // Finalize the hash after all data has been processed.
/// let hash = hasher.finalize();
///
/// Ok(hash)
///}
///
/// #[tokio::main]
/// async fn main() -> Result<(), std::io::Error> {
/// // Example: In-memory data.
/// let data = b"Hello, world!"; // A byte slice.
/// let reader = Cursor::new(data); // Create an in-memory AsyncRead.
/// let hasher = Hasher;
/// hash_stream(reader, hasher).await
/// }
/// ```
///
///
/// ## Example 2: Compressing Data
///
/// When compressing data, the use of `SyncIoBridge` is unnecessary as it introduces
/// blocking and inefficient code. Instead, you can utilize an async compression library
/// such as the [`async-compression`](https://docs.rs/async-compression/latest/async_compression/)
/// crate, which is built to handle asynchronous data streams efficiently.
///
/// Explanation: This example shows how to asynchronously compress data using an
/// async compression library. By reading and writing asynchronously, it avoids
/// blocking and is more efficient than using `SyncIoBridge` with a non-async
/// compression library.
///
/// ```ignore
/// use async_compression::tokio::write::GzipEncoder;
/// use std::io::Cursor;
/// use tokio::io::AsyncRead;
///
/// /// Asynchronously compresses data from an async reader using Gzip and an async encoder.
/// async fn compress_data(mut reader: impl AsyncRead + Unpin) -> Result<(), std::io::Error> {
/// let writer = tokio::io::sink();
///
/// // Create a Gzip encoder that wraps the writer.
/// let mut encoder = GzipEncoder::new(writer);
///
/// // Copy data from the reader to the encoder, compressing it.
/// tokio::io::copy(&mut reader, &mut encoder).await?;
///
/// Ok(())
///}
///
/// #[tokio::main]
/// async fn main() -> Result<(), std::io::Error> {
/// // Example: In-memory data.
/// let data = b"Hello, world!"; // A byte slice.
/// let reader = Cursor::new(data); // Create an in-memory AsyncRead.
/// compress_data(reader).await?;
///
/// Ok(())
/// }
/// ```
///
///
/// ## Example 3: Parsing Data Formats
///
///
/// `SyncIoBridge` is not ideal when parsing data formats such as `JSON`, as it
/// blocks async operations. A more efficient approach is to read data asynchronously
/// into memory and then `deserialize` it, avoiding unnecessary synchronization overhead.
///
/// Explanation: This example shows how to asynchronously read data into memory
/// and then parse it as `JSON`. By avoiding `SyncIoBridge`, the asynchronous runtime
/// remains unblocked, leading to better performance when working with asynchronous
/// I/O streams.
///
/// ```rust,no_run
/// use tokio::io::AsyncRead;
/// use tokio::io::AsyncReadExt;
/// use std::io::Cursor;
/// # mod serde {
/// # pub trait DeserializeOwned: 'static {}
/// # impl<T: 'static> DeserializeOwned for T {}
/// # }
/// # mod serde_json {
/// # use super::serde::DeserializeOwned;
/// # pub fn from_slice<T: DeserializeOwned>(_: &[u8]) -> Result<T, std::io::Error> {
/// # unimplemented!()
/// # }
/// # }
/// # #[derive(Debug)] struct MyStruct;
///
///
/// async fn parse_json(mut reader: impl AsyncRead + Unpin) -> Result<MyStruct, std::io::Error> {
/// // Read all data from the reader into a Vec<u8>.
/// let mut data = Vec::new();
/// reader.read_to_end(&mut data).await?;
///
/// // Deserialize the data from the Vec<u8> into a MyStruct instance.
/// let value: MyStruct = serde_json::from_slice(&data)?;
///
/// Ok(value)
///}
///
/// #[tokio::main]
/// async fn main() -> Result<(), std::io::Error> {
/// // Example: In-memory data.
/// let data = b"Hello, world!"; // A byte slice.
/// let reader = Cursor::new(data); // Create an in-memory AsyncRead.
/// parse_json(reader).await?;
/// Ok(())
/// }
/// ```
///
/// ## Correct Usage of `SyncIoBridge` inside `spawn_blocking`
///
/// `SyncIoBridge` is mainly useful when you need to interface with synchronous
/// libraries from an asynchronous context.
///
/// Explanation: This example shows how to use `SyncIoBridge` inside a `spawn_blocking`
/// task to safely perform synchronous I/O without blocking the async runtime. The
/// `spawn_blocking` ensures that the synchronous code is offloaded to a dedicated
/// thread pool, preventing it from interfering with the async tasks.
///
/// ```rust
/// use tokio::task::spawn_blocking;
/// use tokio_util::io::SyncIoBridge;
/// use tokio::io::AsyncRead;
/// use std::marker::Unpin;
/// use std::io::Cursor;
///
/// /// Wraps an async reader with `SyncIoBridge` and performs synchronous I/O operations in a blocking task.
/// async fn process_sync_io(reader: impl AsyncRead + Unpin + Send + 'static) -> Result<Vec<u8>, std::io::Error> {
/// // Wrap the async reader with `SyncIoBridge` to allow synchronous reading.
/// let mut sync_reader = SyncIoBridge::new(reader);
///
/// // Spawn a blocking task to perform synchronous I/O operations.
/// let result = spawn_blocking(move || {
/// // Create an in-memory buffer to hold the copied data.
/// let mut buffer = Vec::new();
/// // Copy data from the sync_reader to the buffer.
/// std::io::copy(&mut sync_reader, &mut buffer)?;
/// // Return the buffer containing the copied data.
/// Ok::<_, std::io::Error>(buffer)
/// })
/// .await??;
///
/// // Return the result from the blocking task.
/// Ok(result)
///}
///
/// #[tokio::main]
/// async fn main() -> Result<(), std::io::Error> {
/// // Example: In-memory data.
/// let data = b"Hello, world!"; // A byte slice.
/// let reader = Cursor::new(data); // Create an in-memory AsyncRead.
/// let result = process_sync_io(reader).await?;
///
/// // You can use `result` here as needed.
///
/// Ok(())
/// }
/// ```
///
#[derive(Debug)]
pub struct SyncIoBridge<T> {
src: T,
rt: tokio::runtime::Handle,
}
impl<T: AsyncBufRead + Unpin> BufRead for SyncIoBridge<T> {
fn fill_buf(&mut self) -> std::io::Result<&[u8]> {
let src = &mut self.src;
self.rt.block_on(AsyncBufReadExt::fill_buf(src))
}
fn consume(&mut self, amt: usize) {
let src = &mut self.src;
AsyncBufReadExt::consume(src, amt)
}
fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> std::io::Result<usize> {
let src = &mut self.src;
self.rt
.block_on(AsyncBufReadExt::read_until(src, byte, buf))
}
fn read_line(&mut self, buf: &mut String) -> std::io::Result<usize> {
let src = &mut self.src;
self.rt.block_on(AsyncBufReadExt::read_line(src, buf))
}
}
impl<T: AsyncRead + Unpin> Read for SyncIoBridge<T> {
fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
let src = &mut self.src;
self.rt.block_on(AsyncReadExt::read(src, buf))
}
fn read_to_end(&mut self, buf: &mut Vec<u8>) -> std::io::Result<usize> {
let src = &mut self.src;
self.rt.block_on(src.read_to_end(buf))
}
fn read_to_string(&mut self, buf: &mut String) -> std::io::Result<usize> {
let src = &mut self.src;
self.rt.block_on(src.read_to_string(buf))
}
fn read_exact(&mut self, buf: &mut [u8]) -> std::io::Result<()> {
let src = &mut self.src;
// The AsyncRead trait returns the count, synchronous doesn't.
let _n = self.rt.block_on(src.read_exact(buf))?;
Ok(())
}
}
impl<T: AsyncWrite + Unpin> Write for SyncIoBridge<T> {
fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
let src = &mut self.src;
self.rt.block_on(src.write(buf))
}
fn flush(&mut self) -> std::io::Result<()> {
let src = &mut self.src;
self.rt.block_on(src.flush())
}
fn write_all(&mut self, buf: &[u8]) -> std::io::Result<()> {
let src = &mut self.src;
self.rt.block_on(src.write_all(buf))
}
fn write_vectored(&mut self, bufs: &[std::io::IoSlice<'_>]) -> std::io::Result<usize> {
let src = &mut self.src;
self.rt.block_on(src.write_vectored(bufs))
}
}
impl<T: AsyncSeek + Unpin> Seek for SyncIoBridge<T> {
fn seek(&mut self, pos: std::io::SeekFrom) -> std::io::Result<u64> {
let src = &mut self.src;
self.rt.block_on(AsyncSeekExt::seek(src, pos))
}
}
// Because https://doc.rust-lang.org/std/io/trait.Write.html#method.is_write_vectored is at the time
// of this writing still unstable, we expose this as part of a standalone method.
impl<T: AsyncWrite> SyncIoBridge<T> {
/// Determines if the underlying [`tokio::io::AsyncWrite`] target supports efficient vectored writes.
///
/// See [`tokio::io::AsyncWrite::is_write_vectored`].
pub fn is_write_vectored(&self) -> bool {
self.src.is_write_vectored()
}
}
impl<T: AsyncWrite + Unpin> SyncIoBridge<T> {
/// Shutdown this writer. This method provides a way to call the [`AsyncWriteExt::shutdown`]
/// function of the inner [`tokio::io::AsyncWrite`] instance.
///
/// # Errors
///
/// This method returns the same errors as [`AsyncWriteExt::shutdown`].
///
/// [`AsyncWriteExt::shutdown`]: tokio::io::AsyncWriteExt::shutdown
pub fn shutdown(&mut self) -> std::io::Result<()> {
let src = &mut self.src;
self.rt.block_on(src.shutdown())
}
}
impl<T: Unpin> SyncIoBridge<T> {
/// Use a [`tokio::io::AsyncRead`] synchronously as a [`std::io::Read`] or
/// a [`tokio::io::AsyncWrite`] as a [`std::io::Write`].
///
/// When this struct is created, it captures a handle to the current thread's runtime with [`tokio::runtime::Handle::current`].
/// It is hence OK to move this struct into a separate thread outside the runtime, as created
/// by e.g. [`tokio::task::spawn_blocking`].
///
/// Stated even more strongly: to make use of this bridge, you *must* move
/// it into a separate thread outside the runtime. The synchronous I/O will use the
/// underlying handle to block on the backing asynchronous source, via
/// [`tokio::runtime::Handle::block_on`]. As noted in the documentation for that
/// function, an attempt to `block_on` from an asynchronous execution context
/// will panic.
///
/// # Wrapping `!Unpin` types
///
/// Use e.g. `SyncIoBridge::new(Box::pin(src))`.
///
/// # Panics
///
/// This will panic if called outside the context of a Tokio runtime.
#[track_caller]
pub fn new(src: T) -> Self {
Self::new_with_handle(src, tokio::runtime::Handle::current())
}
/// Use a [`tokio::io::AsyncRead`] synchronously as a [`std::io::Read`] or
/// a [`tokio::io::AsyncWrite`] as a [`std::io::Write`].
///
/// This is the same as [`SyncIoBridge::new`], but allows passing an arbitrary handle and hence may
/// be initially invoked outside of an asynchronous context.
pub fn new_with_handle(src: T, rt: tokio::runtime::Handle) -> Self {
Self { src, rt }
}
/// Consume this bridge, returning the underlying stream.
pub fn into_inner(self) -> T {
self.src
}
}
impl<T> AsMut<T> for SyncIoBridge<T> {
fn as_mut(&mut self) -> &mut T {
&mut self.src
}
}
impl<T> AsRef<T> for SyncIoBridge<T> {
fn as_ref(&self) -> &T {
&self.src
}
}