tokio_util/io/
sync_bridge.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
use std::io::{BufRead, Read, Seek, Write};
use tokio::io::{
    AsyncBufRead, AsyncBufReadExt, AsyncRead, AsyncReadExt, AsyncSeek, AsyncSeekExt, AsyncWrite,
    AsyncWriteExt,
};

/// Use a [`tokio::io::AsyncRead`] synchronously as a [`std::io::Read`] or
/// a [`tokio::io::AsyncWrite`] synchronously as a [`std::io::Write`].
///
/// # Alternatives
///
/// In many cases, there are better alternatives to using `SyncIoBridge`, especially
/// if you want to avoid blocking the async runtime. Consider the following scenarios:
///
/// When hashing data, using `SyncIoBridge` can lead to suboptimal performance and
/// might not fully leverage the async capabilities of the system.
///
/// ### Why It Matters:
///
/// `SyncIoBridge` allows you to use asynchronous I/O operations in an synchronous
/// context by blocking the current thread. However, this can be inefficient because:
/// - **Inefficient Resource Usage**: `SyncIoBridge` takes up an entire OS thread,
///   which is inefficient compared to asynchronous code that can multiplex many
///   tasks on a single thread.
/// - **Thread Pool Saturation**: Excessive use of `SyncIoBridge` can exhaust the
///   async runtime's thread pool, reducing the number of threads available for
///   other tasks and impacting overall performance.
/// - **Missed Concurrency Benefits**: By using synchronous operations with
///   `SyncIoBridge`, you lose the ability to interleave tasks efficiently,
///   which is a key advantage of asynchronous programming.
///
/// ## Example 1: Hashing Data
///
/// The use of `SyncIoBridge` is unnecessary when hashing data. Instead, you can
/// process the data asynchronously by reading it into memory, which avoids blocking
/// the async runtime.
///
/// There are two strategies for avoiding `SyncIoBridge` when hashing data. When
/// the data fits into memory, the easiest is to read the data into a `Vec<u8>`
/// and hash it:
///
/// Explanation: This example demonstrates how to asynchronously read data from a
/// reader into memory and hash it using a synchronous hashing function. The
/// `SyncIoBridge` is avoided, ensuring that the async runtime is not blocked.
/// ```rust
/// use tokio::io::AsyncReadExt;
/// use tokio::io::AsyncRead;
/// use std::io::Cursor;
/// # mod blake3 { pub fn hash(_: &[u8]) {} }
///
/// async fn hash_contents(mut reader: impl AsyncRead + Unpin) -> Result<(), std::io::Error> {
///    // Read all data from the reader into a Vec<u8>.
///    let mut data = Vec::new();
///    reader.read_to_end(&mut data).await?;
///
///    // Hash the data using the blake3 hashing function.
///    let hash = blake3::hash(&data);
///
///    Ok(hash)
///}
///
/// #[tokio::main]
/// async fn main() -> Result<(), std::io::Error> {
///     // Example: In-memory data.
///     let data = b"Hello, world!"; // A byte slice.
///     let reader = Cursor::new(data); // Create an in-memory AsyncRead.
///     hash_contents(reader).await
/// }
/// ```
///
/// When the data doesn't fit into memory, the hashing library will usually
/// provide a `hasher` that you can repeatedly call `update` on to hash the data
/// one chunk at the time.
///
/// Explanation: This example demonstrates how to asynchronously stream data in
/// chunks for hashing. Each chunk is read asynchronously, and the hash is updated
/// incrementally. This avoids blocking and improves performance over using
/// `SyncIoBridge`.
///
/// ```rust
/// use tokio::io::AsyncReadExt;
/// use tokio::io::AsyncRead;
/// use std::io::Cursor;
/// # struct Hasher;
/// # impl Hasher { pub fn update(&mut self, _: &[u8]) {} pub fn finalize(&self) {} }
///
/// /// Asynchronously streams data from an async reader, processes it in chunks,
/// /// and hashes the data incrementally.
/// async fn hash_stream(mut reader: impl AsyncRead + Unpin, mut hasher: Hasher) -> Result<(), std::io::Error> {
///    // Create a buffer to read data into, sized for performance.
///    let mut data = vec![0; 64 * 1024];
///    loop {
///        // Read data from the reader into the buffer.
///        let len = reader.read(&mut data).await?;
///        if len == 0 { break; } // Exit loop if no more data.
///
///        // Update the hash with the data read.
///        hasher.update(&data[..len]);
///    }
///
///    // Finalize the hash after all data has been processed.
///    let hash = hasher.finalize();
///
///    Ok(hash)
///}
///
/// #[tokio::main]
/// async fn main() -> Result<(), std::io::Error> {
///     // Example: In-memory data.
///     let data = b"Hello, world!"; // A byte slice.
///     let reader = Cursor::new(data); // Create an in-memory AsyncRead.
///     let hasher = Hasher;
///     hash_stream(reader, hasher).await
/// }
/// ```
///
///
/// ## Example 2: Compressing Data
///
/// When compressing data, the use of `SyncIoBridge` is unnecessary as it introduces
/// blocking and inefficient code. Instead, you can utilize an async compression library
/// such as the [`async-compression`](https://docs.rs/async-compression/latest/async_compression/)
/// crate, which is built to handle asynchronous data streams efficiently.
///
/// Explanation: This example shows how to asynchronously compress data using an
/// async compression library. By reading and writing asynchronously, it avoids
/// blocking and is more efficient than using `SyncIoBridge` with a non-async
/// compression library.
///
/// ```ignore
/// use async_compression::tokio::write::GzipEncoder;
/// use std::io::Cursor;
/// use tokio::io::AsyncRead;
///
/// /// Asynchronously compresses data from an async reader using Gzip and an async encoder.
/// async fn compress_data(mut reader: impl AsyncRead + Unpin) -> Result<(), std::io::Error> {
///    let writer = tokio::io::sink();
///
///    // Create a Gzip encoder that wraps the writer.
///    let mut encoder = GzipEncoder::new(writer);
///
///    // Copy data from the reader to the encoder, compressing it.
///    tokio::io::copy(&mut reader, &mut encoder).await?;
///
///    Ok(())
///}
///
/// #[tokio::main]
/// async fn main() -> Result<(), std::io::Error> {
///     // Example: In-memory data.
///     let data = b"Hello, world!"; // A byte slice.
///     let reader = Cursor::new(data); // Create an in-memory AsyncRead.
///     compress_data(reader).await?;
///
///   Ok(())
/// }
/// ```
///
///
/// ## Example 3: Parsing Data Formats
///
///
/// `SyncIoBridge` is not ideal when parsing data formats such as `JSON`, as it
/// blocks async operations. A more efficient approach is to read data asynchronously
/// into memory and then `deserialize` it, avoiding unnecessary synchronization overhead.
///
/// Explanation: This example shows how to asynchronously read data into memory
/// and then parse it as `JSON`. By avoiding `SyncIoBridge`, the asynchronous runtime
/// remains unblocked, leading to better performance when working with asynchronous
/// I/O streams.
///
/// ```rust,no_run
/// use tokio::io::AsyncRead;
/// use tokio::io::AsyncReadExt;
/// use std::io::Cursor;
/// # mod serde {
/// #     pub trait DeserializeOwned: 'static {}
/// #     impl<T: 'static> DeserializeOwned for T {}
/// # }
/// # mod serde_json {
/// #     use super::serde::DeserializeOwned;
/// #     pub fn from_slice<T: DeserializeOwned>(_: &[u8]) -> Result<T, std::io::Error> {
/// #         unimplemented!()
/// #     }
/// # }
/// # #[derive(Debug)] struct MyStruct;
///
///
/// async fn parse_json(mut reader: impl AsyncRead + Unpin) -> Result<MyStruct, std::io::Error> {
///    // Read all data from the reader into a Vec<u8>.
///    let mut data = Vec::new();
///    reader.read_to_end(&mut data).await?;
///
///    // Deserialize the data from the Vec<u8> into a MyStruct instance.
///    let value: MyStruct = serde_json::from_slice(&data)?;
///
///    Ok(value)
///}
///
/// #[tokio::main]
/// async fn main() -> Result<(), std::io::Error> {
///     // Example: In-memory data.
///     let data = b"Hello, world!"; // A byte slice.
///     let reader = Cursor::new(data); // Create an in-memory AsyncRead.
///     parse_json(reader).await?;
///     Ok(())
/// }
/// ```
///
/// ## Correct Usage of `SyncIoBridge` inside `spawn_blocking`
///
/// `SyncIoBridge` is mainly useful when you need to interface with synchronous
/// libraries from an asynchronous context.
///
/// Explanation: This example shows how to use `SyncIoBridge` inside a `spawn_blocking`
/// task to safely perform synchronous I/O without blocking the async runtime. The
/// `spawn_blocking` ensures that the synchronous code is offloaded to a dedicated
/// thread pool, preventing it from interfering with the async tasks.
///
/// ```rust
/// use tokio::task::spawn_blocking;
/// use tokio_util::io::SyncIoBridge;
/// use tokio::io::AsyncRead;
/// use std::marker::Unpin;
/// use std::io::Cursor;
///
/// /// Wraps an async reader with `SyncIoBridge` and performs synchronous I/O operations in a blocking task.
/// async fn process_sync_io(reader: impl AsyncRead + Unpin + Send + 'static) -> Result<Vec<u8>, std::io::Error> {
///    // Wrap the async reader with `SyncIoBridge` to allow synchronous reading.
///    let mut sync_reader = SyncIoBridge::new(reader);
///
///    // Spawn a blocking task to perform synchronous I/O operations.
///    let result = spawn_blocking(move || {
///        // Create an in-memory buffer to hold the copied data.
///        let mut buffer = Vec::new();
///        // Copy data from the sync_reader to the buffer.
///        std::io::copy(&mut sync_reader, &mut buffer)?;
///        // Return the buffer containing the copied data.
///        Ok::<_, std::io::Error>(buffer)
///    })
///    .await??;
///
///    // Return the result from the blocking task.
///    Ok(result)
///}
///
/// #[tokio::main]
/// async fn main() -> Result<(), std::io::Error> {
///     // Example: In-memory data.
///     let data = b"Hello, world!"; // A byte slice.
///     let reader = Cursor::new(data); // Create an in-memory AsyncRead.
///     let result = process_sync_io(reader).await?;
///
///     // You can use `result` here as needed.
///
///     Ok(())
/// }
/// ```
///
#[derive(Debug)]
pub struct SyncIoBridge<T> {
    src: T,
    rt: tokio::runtime::Handle,
}

impl<T: AsyncBufRead + Unpin> BufRead for SyncIoBridge<T> {
    fn fill_buf(&mut self) -> std::io::Result<&[u8]> {
        let src = &mut self.src;
        self.rt.block_on(AsyncBufReadExt::fill_buf(src))
    }

    fn consume(&mut self, amt: usize) {
        let src = &mut self.src;
        AsyncBufReadExt::consume(src, amt)
    }

    fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> std::io::Result<usize> {
        let src = &mut self.src;
        self.rt
            .block_on(AsyncBufReadExt::read_until(src, byte, buf))
    }
    fn read_line(&mut self, buf: &mut String) -> std::io::Result<usize> {
        let src = &mut self.src;
        self.rt.block_on(AsyncBufReadExt::read_line(src, buf))
    }
}

impl<T: AsyncRead + Unpin> Read for SyncIoBridge<T> {
    fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
        let src = &mut self.src;
        self.rt.block_on(AsyncReadExt::read(src, buf))
    }

    fn read_to_end(&mut self, buf: &mut Vec<u8>) -> std::io::Result<usize> {
        let src = &mut self.src;
        self.rt.block_on(src.read_to_end(buf))
    }

    fn read_to_string(&mut self, buf: &mut String) -> std::io::Result<usize> {
        let src = &mut self.src;
        self.rt.block_on(src.read_to_string(buf))
    }

    fn read_exact(&mut self, buf: &mut [u8]) -> std::io::Result<()> {
        let src = &mut self.src;
        // The AsyncRead trait returns the count, synchronous doesn't.
        let _n = self.rt.block_on(src.read_exact(buf))?;
        Ok(())
    }
}

impl<T: AsyncWrite + Unpin> Write for SyncIoBridge<T> {
    fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
        let src = &mut self.src;
        self.rt.block_on(src.write(buf))
    }

    fn flush(&mut self) -> std::io::Result<()> {
        let src = &mut self.src;
        self.rt.block_on(src.flush())
    }

    fn write_all(&mut self, buf: &[u8]) -> std::io::Result<()> {
        let src = &mut self.src;
        self.rt.block_on(src.write_all(buf))
    }

    fn write_vectored(&mut self, bufs: &[std::io::IoSlice<'_>]) -> std::io::Result<usize> {
        let src = &mut self.src;
        self.rt.block_on(src.write_vectored(bufs))
    }
}

impl<T: AsyncSeek + Unpin> Seek for SyncIoBridge<T> {
    fn seek(&mut self, pos: std::io::SeekFrom) -> std::io::Result<u64> {
        let src = &mut self.src;
        self.rt.block_on(AsyncSeekExt::seek(src, pos))
    }
}

// Because https://doc.rust-lang.org/std/io/trait.Write.html#method.is_write_vectored is at the time
// of this writing still unstable, we expose this as part of a standalone method.
impl<T: AsyncWrite> SyncIoBridge<T> {
    /// Determines if the underlying [`tokio::io::AsyncWrite`] target supports efficient vectored writes.
    ///
    /// See [`tokio::io::AsyncWrite::is_write_vectored`].
    pub fn is_write_vectored(&self) -> bool {
        self.src.is_write_vectored()
    }
}

impl<T: AsyncWrite + Unpin> SyncIoBridge<T> {
    /// Shutdown this writer. This method provides a way to call the [`AsyncWriteExt::shutdown`]
    /// function of the inner [`tokio::io::AsyncWrite`] instance.
    ///
    /// # Errors
    ///
    /// This method returns the same errors as [`AsyncWriteExt::shutdown`].
    ///
    /// [`AsyncWriteExt::shutdown`]: tokio::io::AsyncWriteExt::shutdown
    pub fn shutdown(&mut self) -> std::io::Result<()> {
        let src = &mut self.src;
        self.rt.block_on(src.shutdown())
    }
}

impl<T: Unpin> SyncIoBridge<T> {
    /// Use a [`tokio::io::AsyncRead`] synchronously as a [`std::io::Read`] or
    /// a [`tokio::io::AsyncWrite`] as a [`std::io::Write`].
    ///
    /// When this struct is created, it captures a handle to the current thread's runtime with [`tokio::runtime::Handle::current`].
    /// It is hence OK to move this struct into a separate thread outside the runtime, as created
    /// by e.g. [`tokio::task::spawn_blocking`].
    ///
    /// Stated even more strongly: to make use of this bridge, you *must* move
    /// it into a separate thread outside the runtime.  The synchronous I/O will use the
    /// underlying handle to block on the backing asynchronous source, via
    /// [`tokio::runtime::Handle::block_on`].  As noted in the documentation for that
    /// function, an attempt to `block_on` from an asynchronous execution context
    /// will panic.
    ///
    /// # Wrapping `!Unpin` types
    ///
    /// Use e.g. `SyncIoBridge::new(Box::pin(src))`.
    ///
    /// # Panics
    ///
    /// This will panic if called outside the context of a Tokio runtime.
    #[track_caller]
    pub fn new(src: T) -> Self {
        Self::new_with_handle(src, tokio::runtime::Handle::current())
    }

    /// Use a [`tokio::io::AsyncRead`] synchronously as a [`std::io::Read`] or
    /// a [`tokio::io::AsyncWrite`] as a [`std::io::Write`].
    ///
    /// This is the same as [`SyncIoBridge::new`], but allows passing an arbitrary handle and hence may
    /// be initially invoked outside of an asynchronous context.
    pub fn new_with_handle(src: T, rt: tokio::runtime::Handle) -> Self {
        Self { src, rt }
    }

    /// Consume this bridge, returning the underlying stream.
    pub fn into_inner(self) -> T {
        self.src
    }
}

impl<T> AsMut<T> for SyncIoBridge<T> {
    fn as_mut(&mut self) -> &mut T {
        &mut self.src
    }
}

impl<T> AsRef<T> for SyncIoBridge<T> {
    fn as_ref(&self) -> &T {
        &self.src
    }
}